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1.  INTRODUCTION

Knowledge of species-specific spatial distributions
is fundamental to meeting conservation and man-
agement objectives (Elith & Leathwick 2009, Guisan
et al. 2013). In the marine environment, species dis-

tribution models (SDMs) have proliferated in the last
decade (Robinson et al. 2017, Melo-Merino et al.
2020) as technology, availability of spatial data, and
computation capacity have rapidly improved. SDMs
can simultaneously illuminate species−habitat rela-
tionships as well as map the spatial patterns of spe-
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cies distributions. Although SDMs are based on cor-
relative models, the ability to quantify the effect of
multiscale predictors has led to a new field of sea-
scape ecology (Pittman et al. 2011). Seascape analy-
ses have confirmed expectations that marine fish dis-
tributions are dynamic over multiple spatial and
temporal scales (Mannocci et al. 2017), including
broad-scale effects such as offshore reef fish distribu-
tion being associated with distant mangrove and sea-
grass habitats (Olds et al. 2012, Martin et al. 2015).
For these reasons, determining the most relevant
spatial scales that link patterns and processes of mar-
ine systems has been identified as a research priority
in seascape ecology (Pittman et al. 2021).

Depth and sea surface temperature (SST) are the
most frequently utilized variables when examining
the spatial distributions of marine organisms (Melo-
Merino et al. 2020). These variables are often corre-
lated, and temperature can define the extent of species
distributions based on an optimization of physiologi-
cal conditions for organisms (Kearney & Porter 2009).
In contrast, variables such as ocean productivity,
salinity, temperature gradients or fronts, and ocean
currents influence species distribution at a finer scale
often termed the mesoscale (Hobday & Hartog 2014).
Prey distributions and substrate type may further
characterize fine-scale habitat influences on species
distributions. At a fine scale, depth and temperature
are likely indirectly related to fish distribution. For
example, depth may correlate with fish distribution
because of varying salinity, light availability, phyto-
plankton concentration, prey distribution, or other vari-
ables. Possible correlates with temperature include
productivity gradients or upwelling, which can mod-
ulate prey distribution. More direct predictors, in -
cluding food availability, that are directly associated
with species-specific resource needs are considered
among the most robust variables, yet are challenging
to quantify (Austin 2002). Nonetheless, the identifi-
cation of direct habitat associations has the potential
to provide insights into habitat requirements of spe-
cies. More specifically, US policy protects ‘Essential
Fish Habitat,’ defined as the waters and substrates
required for a species to spawn, breed, feed, or grow
to maturity (US Sustainable Fisheries Act of 1996,
Public Law 104-297). Modeling studies have identi-
fied the ecological requirements for marine fishes in
this management context (Moore et al. 2016, Pennino
et al. 2016), and while predator−prey overlap is ex -
pected, few studies have tested the predictive capac-
ity of these biological predictor variables particularly
at ocean-basin scales (Robinson et al. 2011, Pickens
et al. 2021c).

Productivity of marine environments is often meas-
ured using chlorophyll a (Melo-Merino et al. 2020),
upwelling strength (Santora et al. 2014, Marin-
Enriquez et al. 2018), or oceanographic fronts (Scales
et al. 2014, Queiroz et al. 2016). However, cross-sys-
tem trophic interactions are likely to occur across
coastal environments (Zuercher & Galloway 2019),
particularly between extremely productive salt marsh−
estuary systems and the oceanic environment. The
original ‘outwelling hypothesis’ developed by Odum
(1980) postulates that the high production of marsh−
estuarine systems has a net export of detritus and
particulate organic carbon into the coastal ocean. Sub -
sequent studies have shown that this carbon export is
not likely substantial, and Deegan et al. (2002) pro-
posed that coastal wetlands primarily support off-
shore fisheries by exporting juvenile fish biomass, as
salt marshes support a trophic transfer of energy
from primary productivity to invertebrates and nek-
ton; subsequently, nekton undergo ontogenetic shifts
and cyclic migration that export energy to the marine
environment in the form of fish biomass. For exam-
ple, Deegan (1993) quantified the export of Gulf men-
haden Brevoortia patronus from estuaries to offshore
waters and found that the export accounted for 5−
10% of inshore primary productivity measured as
annual carbon, biomass, and kilocalories exported.
Similarly, estuarine-dependent brown shrimp Penaeus
aztecus have been identified as a key component of
marine fish food webs in Europe (Poiesz et al. 2020),
and mangroves are thought to support offshore fish-
eries in Asia (Chong 2007). The relationship between
estuarine wetlands and marine predators has rarely
been tested or demonstrated. Overall, few studies
have examined whether marine fish distributions are
associated with predictors depicting prey species
abundance or adjacent estuarine wetlands (Pickens
et al. 2021c). In particular, understanding spatial link-
ages between inshore and offshore habitats used by
marine species has important implications for coastal
ocean management that seeks to minimize impacts to
fisheries habitats from human uses.

Because of the prominence and variability of coastal
environments in the northern Gulf of Mexico (nGoM),
and availability of fishery-independent data, it is an
ideal setting to test predator−prey and estuarine−
wetland relationships with predators like snappers
(Lutjanidae) and coastal sharks (Carcharhinidae).
Estuarine waters, particularly in conjunction with
coastal wetlands, in the nGoM provide habitat for
estuarine-dependent early life stages of marine
fishes and are fundamental habitat for abundant prey
resources such as forage fish, shrimp, and crabs
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(Spies et al. 2016). Food webs in the nGoM show
common linkages among penaeid shrimp, menhaden
(Brevoortia spp.), squid, snapper, and sharks (Tar-
necki et al. 2016). In particular, the amount of Gulf
menhaden consumption is projected to have major
effects on the biomass of higher trophic level fish-
eries (Robinson et al. 2015, Geers et al. 2016).

The objectives of our study were to: (1) develop
species distribution models for 2 snapper and 3 shark
species with diverse life history requirements; (2)
determine habitat relationships using a broad suite
of multiscale predictor variables, including prey abun-
dance, area of nearby estuaries and wetlands, sub-
strate type and complexity, and oceanographic char-
acteristics; and (3) examine the influence of predictors
across these models. We hypothesized that prey dis-
tribution and the area of nearby estuarine habitats
would be important predictors of the spatial distribu-
tion of predatory species in the marine environment.

2.  MATERIALS AND METHODS

2.1.  Study area

The study area spanned the nGoM from Texas to
Florida, USA. The landward boundary began with
federally managed waters (5.6 km from the shore of
Louisiana, Mississippi, and Alabama; 16.7 km from
the shore of Texas and Florida) through the 50 m
depth contour. Only waters ≤50 m in depth were in -
cluded because our focus was on examining poten-
tial sand-dredging impacts to fisheries habitat (see
Kim et al. 2008, Drabble 2012, Hwang et al. 2013).
Benthic substrate of the study area consists of uncon-
solidated sediments ranging from mud to gravel with
natural patches of hardbottom reefs scattered through-
out but primarily associated with the West Florida
Shelf and the shelf edge break (Rezak et al. 1985).
Additionally, since the 1950s, >20 000 artificial reefs
and >4000 oil and gas platforms have been installed
in the GoM, with approximately 3900 oil and gas
platforms remaining (Shipp & Bortone 2009). These
structures are common in the western part of the
study area and provide complex substrate to fishes.

2.2.  Biological data

We modeled the distribution of juvenile red snap-
per Lutjanus campechanus (ages 0 and 1), lane snap-
per L. synagris (ages 0 and 1), blacktip sharks Car-
charhinus limbatus, spinner sharks C. brevipinna,

and Atlantic sharpnose sharks Rhizoprionodon ter-
raenovae. These species were selected based on
their designation as federally managed species with
designated Essential Fish Habitat in shallow waters,
data availability, economic importance, known prey
associations (e.g. Gulf menhaden), and their poten-
tial association with unconsolidated sediments, sand
shoals, and substrate complexity. We used fishery-
independent data collected from 2003 to 2017 to
evaluate spatial distributions of each species. Shark
catch per unit effort (CPUE) data were collected dur-
ing annual bottom longline surveys conducted by the
National Marine Fisheries Service, Mississippi Labo-
ratories, and conducted annually throughout the
nGoM from July through September. In addition, we
used data from the Congressional Supplemental
Sampling Program, an extensive bottom longline sur-
vey that occurred from 7 April through 25 October of
2011. Both bottom longline surveys were conducted
using standardized methods described in detail by
Driggers et al. (2012). Briefly, surveys were conducted
using random-stratified survey designs throughout
the nGoM. All bottom longline surveys deployed
1.85 km of mainline and 100 gangions with a 15/0 cir-
cle hook baited with Atlantic mackerel Scomber
scombrus. Gear soak times were targeted to be 1 h;
however, in some cases, longline sets were shorter or
longer in duration than planned due to unforeseen
issues (e.g. mechanical failure, vessel traffic, weather).
As a result, data from longline sets with effort outside
of the 37−107 min range were excluded (<0.2% of
the dataset). Seven longline sets used <80 hooks and
were removed (<0.5% of dataset); data from longline
sets with >85 gangions de ployed were retained for
analyses, and the remaining surveys had 86−104
hooks per longline set. We used presence/ absence
data for blacktip and spinner sharks because of their
relatively low frequency of capture in the study area;
for the more commonly captured Atlantic sharpnose
shark, CPUE was calculated as: 

(1)

where c is the number of Atlantic sharpnose sharks
captured, h is the number of hooks deployed, and t is
the soak time in minutes. The multipliers 60 min and
100 hooks were used to standardize CPUE data as
number of Atlantic sharpnose sharks caught per 100
hook hours. Prior to analyses, generalized additive
models (GAMs) (knots = 3) were used to test the
association of survey length (km) and duration (min)
on species occurrence and CPUE to evaluate if asso-
ciations were minimal. Given that all tests showed

CPUE
·

·60·100
c

h t( )=
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that <2% of the deviance was explained by these
factors, we used CPUE and occurrence data without
correction.

To evaluate juvenile red and lane snapper spatial
distributions, we used trawl surveys conducted as
part of the Southeast Area Monitoring and Assess-
ment Program (SEAMAP). The SEAMAP trawl sur-
veys are conducted annually across the continental
shelf of the nGoM during summer (June−August)
and autumn months (October−December). With the
ex ception of minor changes in research design imple-
mented in 2008, the SEAMAP trawl survey has used
standardized gear, protocols, and a random stratified
sampling design since 1987 (Craig & Crowder 2005,
Rester 2017). The SEAMAP trawl survey deploys a
12.8 m shrimp trawl with a with a mesh size of 4.1 cm
stretched at the codend. In some cases when the bio-
logical catch exceeded 22.7 kg, only a subset of the
snappers were counted and measured. In these cases,
we projected the full trawl catch based on extrapola-
tion of the sub-sample, and we assumed that this
extrapolation applied to each age group equally.
Trawl surveys targeted a 30 min duration. Extremely
long or short trawl survey lengths were removed, and
subsequently data from trawls ranging from 11−
52 min and 1.0−5.2 km were used in analyses. Ex -
cluded data were <15% of the trawl surveys and were
often in the shallowest and deepest waters within the
study area, indicating logistical challenges. Trawl
survey counts were transformed to CPUE, and were
calculated as fish km−1 surveyed. Prior to analyses,
we used GAMs to test the association of trawl length
and duration with CPUE and occurrence of our target
species to evaluate the association. All tests showed
that <2% of the deviance was explained by these
effects except for a negative association with age-0
red snapper (2.7% of de viance explained) and a posi-
tive association with age-1 lane snapper (4.5% of
deviance explained). Given these mixed effects, we
proceeded with using CPUE and occurrence data
without further correction. The centroids of trawl
tows and bottom longline sets were used to depict
survey locations and to link surveys to predictor
 variables.

Each snapper age class was expected to use differ-
ent habitat because both species undergo an ontoge-
netic shift from soft-bottom habitats occupied by
juveniles to high-relief reefs occupied during young
adult stages. Therefore, analyses included red snap-
per age 0 (51−172 mm total length [TL]) and age 1
(173−300 mm TL) as well as lane snapper age 0
(<199 mm TL) and age 1 (≥199 mm TL) (see details in
Text S1 in the Supplement at www. int-res. com/

articles/ suppl/ m682 p169 _ supp .pdf). We did not dis-
tinguish shark ages or sexes for analyses, but the
proportion of each life stage present was estimated
based on length (Text S1). Of the sexed blacktip
sharks, 54% were female and 46% were male. We
estimated blacktip sharks sampled were 0.002% (3
individuals) young-of-year, 65% juvenile, and 35%
adult. Of the sexed Atlantic sharpnose sharks, 49%
were male and 51% female, and age classes showed
2% young-of-year, 27% juvenile, and 71% adult. Of
sexed spinner sharks, 49% were female and 51%
were male. Spinner shark age classification showed
3% young-of-year, 43% juveniles, and 54% adults.
Although shark habitat use can differ by sex, we did
not separate males and females in our analysis be -
cause sample size would have been reduced, not all
sharks were sexed, and Essential Fish Habitat for
sharks is not defined by sex in the US.

2.3.  GIS methods and environmental 
predictor variables

Spatial analyses of environmental data were con-
ducted in ArcGIS 10.6 (ESRI). We developed pre -
dictor variables depicting oceanography, substrate,
geography, area of nearby wetlands and estuaries,
and biological characteristics (Table 1). For depth,
and variables derived from bathymetry, the Coastal
Relief Model (NOAA National Centers for Environ-
mental Information 2010) was used for waters near
Texas, Louisiana, Mississippi, and Alabama. Off-
shore of Florida, we observed bathymetric artifacts in
the Coastal Relief Model that spanned tens of kilo-
meters; therefore, these data were replaced with
50 m resolution bathymetry developed by the US
Geological Survey (Robbins et al. 2007). To be con-
sistent across the study area, these data were resam-
pled to a 90 m resolution using bilinear interpolation.
From the bathymetry data, we used the ArcGIS Ben-
thic Terrain Modeler (Walbridge et al. 2018) to calcu-
late slope (3 × 3 cell) and the bathymetric position
index (BPI). The BPI quantifies seafloor topography
with values ≥1 indicating a cell is shallower than sur-
rounding cells and a BPI ≤−1 indicating a cell is deeper
than surrounding cells. Flat areas are depicted by
BPI values between −1 and 1. The BPI was calculated
with an inner radius of 1 cell (90 m) and an outer
radius of 71 cells (6.4 km) based on the methods of
Pickens et al. (2021b), who quantified seafloor topo -
graphy in the nGoM to identify sand shoals. The
topographic position of each cell was compared to
the average position of cells over a 6.4 km radius
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because sand shoal features can be several kilo -
meters wide (Pickens et al. 2021b).

We obtained sediment grain sizes from an interpo-
lation of point data from the US Geological Survey
(Williams et al. 2012). The extent and distribution of
sand shoal geoforms were obtained from Pickens et
al. (2021b). To correspond to the approximate length
of trawl surveys, the ArcGIS focal statistics function
was used to calculate mean depth, the coefficient of
variation (CV) of depth, mean slope, mean sediment
grain size, proportion of area with a BPI of ≥1, and
proportion of area classified as a shoal within a 3 km
radius. We used a 3 km radius because this distance
corresponded to the average length of trawl surveys.

Oceanographic predictors were obtained using the
Marine Geospatial Ecology Toolbox (Roberts et al.
2010) (Table 1). Although fish were counted on a sin-
gular survey day, their distribution is likely deter-
mined by variation in oceanographic conditions over
weeks, months, or years. Therefore, we developed
climatologies for bottom water temperature, bottom
salinity, mixed layer depth (MLD), and bottom cur-
rent velocity for U- and V- directions from the HYbrid

Coordinate Ocean Model (HYCOM)
(Chassignet et al. 2009). The HYCOM
data define MLD as the depth where
temperature change from the surface
is ≥0.2°C. Chlorophyll a data were a
product of the Aqua MODIS satellite
8 d composites. SST was derived from
the processing of a blend of satellite
measures to produce high-resolution
data (JPL MUR MEaSUREs Pro-
ject 2015). All oceanographic meas-
ures were averaged monthly over the
period of 1 January 2003 to 31 Decem-
ber 2017. Monthly measures were then
averaged by seasons: spring = 1 March
− 31 May; summer = 1 June − 31
August; autumn = 1 September − 30
November; winter = 1 December − 28/
29 February). We used remote sensing
data to characterize oceanographic
con ditions because these measures
are consistent across the sampling
domain and variables represent long-
term spatial patterns driven by ecolog-
ical processes rather than instanta-
neous conditions.

Hypoxia is a chronic, seasonal issue
in the nGoM (Rabalais et al. 2010). To
quantify hypoxia (waters with ≤2 mg
l−1 dissolved oxygen), we used the

results of Matli et al. (2018), who modeled the annual
probability of hypoxia based on multiple in situ mon-
itoring programs conducted by agencies and univer-
sities. From these data, the mean probability of
hypoxia for July and August of 2003−2017 was used
as a predictor in our models of fish occurrence. As the
data were initially points, an interpolated raster data-
set was created by using ordinary, spherical kriging
with calculations including 8 adjacent points. Four
trawl survey points southwest of the Mississippi
River Delta were in waters not included in the prob-
ability of hypoxia predictor. These points were adja-
cent to waters with some of the highest probabilities
of hypoxia (>30%), and had been recorded as
hypoxic when measured by other datasets (NOAA
National Centers for Environmental Information 2019).
Therefore, we estimated probability of hypoxia for
these waters by extrapolating from the nearest cells
of hypoxia data using the ArcGIS ‘expand’ tool.

We developed a distance to shore variable from the
spatial boundaries of the Submerged Lands Act
(Office for Coastal Management 2020), which distin-
guishes federal and state managed waters based on
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Variable type           Predictor variable (units)                                Resolution

Oceanography         Mean depth (m)                                                   90 m
                                 Mean bottom temperature (°C)sp,aut                          4.4 km
                                 Mean sea surface temperature (°C)sp,aut                1.2 km
                                 Maximum chlorophyll a (mg m−3)                    5.5 km
                                 Minimum bottom salinity                                 4.4 km
                                 (practical salinity scale)
                                 Mean bottom current U- and                                         9.3 km
                                 V-velocity (m s−1)sp,su,aut

                                 Mean mixed layer depth (m)sp, su                     4.4 km
                                 Hypoxia (mean probability; %)                          90 m
Substrate                  CV of depth                                                         90 m
                                 Distance to shoal (km)                                         90 m
                                 Proportion of area with shoal                             90 m
                                 Mean sediment grain size (mm)                       370 m  
                                 Proportion of area with BPI ≥1                           90 m
                                 Slope (degrees)                                                    90 m
                                 Distance to natural reef (km)                              90 m 
                                 Distance to artificial structures (km)                  90 m
                                 Density of artificial structures                            90 m
                                 (structures km−2)
Geography               East or west of 88° W longitude (binary)           90 m
                                 Distance to shoreline (km)                                  90 m
Nearby estuarine    Area of nearby wetlands (km2)                          90 m

environments         Area of nearby estuaries (km2)                           90 m
Biological                 Species-specific prey (counts)                            90 m

Table 1. Variables developed to predict the distribution of fish species in the
northern Gulf of Mexico, USA. Superscripts are seasons of data included in
the analysis (sp: spring; su: summer; aut: autumn). Seasons not included were
removed because of multicollinearity. CV: coefficient of variation; BPI: 

bathymetric position index
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distance from shore. The ArcGIS buffer tool was
used to re-create the shore boundaries, and from
those we calculated the Euclidean distance from
shore. A longitudinal threshold was used to depict
whether the location was east (1) or west (0) of the
88° W longitude (Mobile Bay, Alabama). The CPUE
of penaeid shrimp (Montero et al. 2016, Pickens et al.
2021a) and red snapper (Dance & Rooker 2019)
increase drastically west of this longitude. Shallow
waters west of this longitude are dominated by river-
ine influences, and there is substantially more mud
substrate, salinity is lower, chlorophyll a is higher,
and artificial reefs are common. To determine if the
area of nearby estuarine wetlands correlates with the
distribution of fish in the marine environment, we
used National Wetlands Inventory data and its classi-
fication of ‘estuarine and marine wetland’ (US Fish
and Wildlife Service 2018). We first calculated the
farthest distance from an estuarine wetland in the
study area, which was 160 km. Focal statistics were
then used to sum the area (km2) of estuarine wet-
lands within a 160 km radius of a cell in the marine
environment. Estuarine waters were defined from a
digital map of fish habitat (NOAA National Marine
Fisheries Service 2019), which characterized all estu-
aries in the nGoM. To ensure only estuarine waters
were included in the dataset, waters seaward of the
shoreline position were removed. Similar to area of
nearby wetlands, area of estuaries within a 160 km
radius of each cell in the marine environment were
summed together across the study area. These novel
spatial metrics quantified the area of nearby estuary
and wetland environments, which inherently com-
bines both the proximity to and the area of these
environments. The advantage of this method com-
pared to typical proximity metrics is that these novel
variables distinguish locations in close proximity to
small estuaries/wetlands from locations in close
proximity to large estuaries/wetlands.

Natural reef locations were primarily mapped dur-
ing SEAMAP reef fish video surveys and were syn-
thesized with other sources, including available chart-
ing (Rezak et al. 1985), historical knowledge from
fishermen, and bathymetric mapping (i.e. side-scan
sonar and multi-beam sonar) (M. Campbell & B. Noble
unpublished data). We calculated artificial struc-
tures, including artificial reefs (Office for Coastal
Management 2017) and oil and gas platforms (Bureau
of Safety and Environmental Enforcement Gulf of
Mexico OCS Region 2014), as a point density within
a 3 km radius and with the Euclidean distance to the
nearest artificial structure for each location in the
study area. We used a 3 km radius because this dis-

tance corresponded to the average length of trawl
surveys.

Potential prey associations were tested based on
prior information regarding species-specific prey
items, and prey distributions were characterized by
their long-term spatial patterns using datasets span-
ning the same time period as the predatory fish sur-
veys. This methodology, based on prior knowledge,
was characterized by Wisz et al. (2013), who outlined
the most appropriate statistical techniques to test bio -
logical relationships. We identified potential preda-
tor− prey associations from the literature with an
emphasis on GoM research when available. For age-
0 red snapper, we identified distributions of squid
(Loligo spp.) (Szedlmayer & Lee 2004, Wells et al.
2008), mantis shrimp (Squilla spp.), and penaeid
shrimp (Bradley & Bryan 1975, Szedlmayer & Lee
2004) as predictors. Based on Szedlmayer & Lee
(2004) and Wells et al. (2008), we used searobin (Pri-
onotus spp.), largescale lizardfish Saurida brasilien-
sis, and squid as predictors of age-1 red snapper. For
age-0 lane snapper, the distribution of brown and
pink shrimp Penaeus duorarum were predictors based
on an estuarine study of stomach contents (Franks &
VanderKooy 2000). We did not identify prey species
in the literature for age-1 lane snapper, therefore no
such predictors were tested. Blacktip and spinner
sharks were selected for species distribution model-
ing in this study in part because of their strong de -
pendence on teleost fishes (Cortés 1999), particularly
menhaden prey (Bethea et al. 2004, Barry et al. 2008,
Geers et al. 2016). Menhaden distribution was used
as a predictor for both species, and croaker Microp-
ogonias undulatus were tested with blacktip sharks
based on Barry et al. (2008) and Plumlee & Wells
(2016). Atlantic sharpnose sharks have high plasticity
in prey, as their diet can be composed of various
amounts and species of fish and crustaceans (Cortés
1999, Drymon et al. 2012, Delorenzo et al. 2015). Har-
rington et al. (2016) found that juveniles had a diet
composed of a high quantity of penaeid shrimp,
while adults consumed a high proportion of teleost
fish (Harrington et al. 2016). For predictors of At -
lantic sharpnose shark CPUE, we used brown shrimp
(CPUE), pink shrimp (probability of presence), and,
based on Bethea et al. (2004) and Plumlee & Wells
(2016), menhaden and croaker abundance.

Prey predictor variables depicting the distribution
of brown shrimp and pink shrimp CPUE were ac -
quired from previously developed SDMs (Pickens et
al. 2021a). We used data from SEAMAP trawl sur-
veys to depict relative abundance of menhaden,
croaker, mantis shrimp, largescale lizardfish, and
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squid. We note that the collection of menhaden via
trawl surveys is not ideal because of their pelagic
nature, but data were otherwise not available. Prey
species count data from trawl survey locations
(2003−2017) were interpolated with ordinary kriging
to create a continuous surface of counts using a
spherical semivariogram model. To maximize accu-
racy, 8 points were used for analysis within a maxi-
mum distance of 10 km. The ArcGIS expand tool was
used to extrapolate prey distributions when trawl
surveys were >10 km from a sampled location in the
study area.

2.4.  Statistical analysis

All predictor variables were examined for multi-
collinearity, and we removed highly correlated vari-
ables (r > 0.80) prior to further analyses (Table 1). In
addition to environmental predictors, the hour of sur-
vey was tested as a potential predictor because time
of day can affect the detectability of sharks (Driggers
et al. 2012) and potentially snapper. Time of day was
also a variable of interest because it has implications
for survey design and future analyses. Day of year
was tested as a potential predictor of shark distribu-
tions; season (summer or autumn) was tested for snap-
per because of potential habitat differences across
time. Year was not used as an explanatory variable
be cause our research aimed to predict a singular
spatial distribution of each species that represented
habitat use in the region. Therefore, we assume
years of high or low CPUE, or frequency of occur-
rence, are representative of long-term fish distribu-
tion fluctuations. The predictor variables considered
for inclusion in each fish model varied with hypothe-
sized species−habitat relationships as follows: (1)
only snappers were tested with artificial structure
and natural reef predictors because these substrates
are a key component of their adult habitats; (2) only
shark species were tested with area of nearby wet-
lands, area of nearby estuaries, and chlorophyll be -
cause of potential relationships with shark prey spe-
cies (e.g. menhaden); (3) blacktip and spinner sharks
were the only species tested with SST because they
prey on menhaden, which are pelagic. The other
species are primarily demersal, so only bottom tem-
perature was considered for them.

As visualized by Pickens et al. (2021a), data used
for training and validation were subset from alternat-
ing zones along a longitudinal gradient throughout
the study area. Fourcade et al. (2018) showed that
random splitting of data can overstate the validation

accuracy of models, and the ‘block’ approach we
used is best at distinguishing models as being poor
when they are truly poor. This also served to ensure
the depth gradient was represented in training and
validation datasets across the longitudinal gradient.
Specifically, we reclassified a raster of longitude into
zones with 23 km widths across the study area. We
then alternated the delineation of training (2 zones)
and validation (1 zone) to define data for training and
validation.

Boosted regression trees (BRTs) were used to
model species−habitat relationships with the training
data, and we used these models to create predictions
for the entirety of the study area. For BRTs, we devel-
oped models based on predictive performance as -
sessed from cross-validation of out-of-bag samples
during each iteration (Elith et al. 2008) rather than p-
values or similar metrics. BRT analyses efficiently
quantify nonlinear relationships, automatically iden-
tify interactions, and can be used with many predic-
tors (De’ath & Fabricius 2000). The predictive power
of decision trees is enhanced by boosting, which
sequentially adds trees that improve the model; the
results are then derived from an ensemble of hun-
dreds of trees (De’ath 2007, Elith et al. 2008). The
procedures outlined by Elith et al. (2008) were used
to develop BRTs and the methods are briefly summa-
rized here. Tree complexities of 1−5 were assessed
and used learning rates that resulted in >1000 trees.
For CPUE models, a Poisson log-linear model was
applied using CPUE as the dependent variable. For
occurrence models, we used a binomial model to pre-
dict probability of presence of a given species. To
avoid overfitting, the BRT simplification procedure
was used, which sequentially drops the weakest pre-
dictor, ranks predictors in order of importance, and
examines the change in model deviance with each
drop. The inflection point where the deviance of the
model abruptly increases after a drop defines which
variables remain in the model with the goal of esti-
mating the most parsimonious model. To be consis-
tent, we defined an inflection point as an increase of
>2% of the deviance explained when dropping a sin-
gle variable and ≥3% for multiple dropped variables.
We quantified the influence of variables with 2 tech-
niques. First, partial dependence plots were created
by examining the effect of each variable while all
others were held at their mean. To create 95% pre -
diction intervals, we used bootstrapping with re -
placement to create 50 samples from the model train-
ing data. The simplified BRT model was fit to each
bootstrap sample and prediction intervals were
determined.
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Secondly, we report relative importance of variables
for each species, as suggested by Elith et al. (2008).
Specifically, the formulae established by Friedman
(2001) are based on the frequency that a variable is
selected for splitting, weighted by the squared
improvement to the model as a result of each split,
and averaged over all decision tree iterations (Fried-
man & Meulman 2003). The relative importance of all
variables within a model are scaled to sum to 100%,
with higher numbers being more important. The
strength of interaction effects was assessed with the
Friedman’s H-statistic (H-statistic), which decom-
poses the variance explained by the partial depend-
ence of each variable and their interaction (Friedman
& Popescu 2008). An H-statistic of 0 shows no inter-
action, and a value of 1.0 shows that all of the vari-
ance explained by the partial dependence functions
is dependent on the interaction. We report and visu-
alize H-statistics of ≥0.15, as these were most
straightforward to interpret.

Model accuracy was assessed with multiple metrics.
We developed models of CPUE for the most common
species, age-0 red snapper and Atlantic sharpnose
sharks. To calculate accuracy of these CPUE models,
we report the percent deviance explained ([null de-
viance − residual deviance]/null deviance) of the
cross-validation and validation tests. A Spearman
rank correlation (Rs) was also computed between ob-
servations from the validation dataset and the corre-
sponding predictions. For occurrence models of age-1
red snapper, age-0 and age-1 lane snapper, blacktip
sharks, and spinner sharks, we assessed accuracy
with an area under the receiver operating characteris-
tic curve (AUC) statistic, and further accuracy metrics
were derived from the error matrix, comprising the
true skill statistic (Allouche et al. 2006), overall accu-
racy, User’s accuracy (percent of predictions correctly
classified), and Producer’s accuracy (percent of obser-
vations correctly classified) (Story & Congalton 1986).
The AUC has been commonly used to
test predictive ability of SDMs (Guisan
& Zimmermann 2000) and is independ-
ent of thresholds. Measures of the AUC
range from 0.0 to 1.0 and were inter-
preted as suggested by Swets (1988)
as follows: <0.50 = no discriminatory
power; 0.50−0.69 = poor power; 0.70−
0.89 = good power; and 0.90−1.0 = ex-
cellent discriminatory power. The true
skill statistic ranges from −1 to +1 with
values of 0 representing random as-
signment. For these metrics, species-
specific presence or absence was dis-

tinguished using the maximum Kappa statistic, which
quantifies the probability threshold that optimally dis-
criminates presence and absence.

Because we anticipated hierarchical relationships
of fish with predictor variables (e.g. broad oceano-
graphic variables combined with fine-scale variables
depicting substrate or depth), SDMs were predicted
to a 90 m resolution raster. For data initially at a res-
olution of >90 m, a bilinear resampling was con-
ducted. The statistical program R (version 3.5.1.) (R
Core Team 2018) and the packages ‘dismo’ (version
1.1-4) and ‘gbm’ (version 2.1.8) were used to imple-
ment BRTs. To predict models to the study area, the R
packages ‘rgdal’ (version 1.4-4) and ‘raster’ (version
2.9-5) were used. We assumed the effect of survey
time of day represented a detectability effect for
blacktip sharks rather than a change in distribution;
therefore, we applied the model at the peak time of
02:00 h. For Atlantic sharpnose sharks, day of year
was a predictor in the final model, and we predicted
at the peak time of year in the model (9 April).

3.  RESULTS

3.1.  Overall findings

Species presence ranged from 13 to 59% of sam-
pling stations, with CPUE models being utilized with
species that were present on >30% of trawls or long-
line sets (Table 2). The CPUE models for age-0 red
snapper and Atlantic sharpnose sharks explained
>40% of the deviance in the validation data with an
Rs of 0.59 and 0.60 in their respective models
(Table 3). All occurrence models had an AUC value
of ≥0.80 when tested with validation data, indicating
the models were very good at discriminating pres-
ence and absence (Table 3). Similarly, validation
results had an overall accuracy of 79−86% and had a
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Species                                    Model type         % Presence         Total count

Red snapper (age 0)                    CPUE                      36                     23 076
Red snapper (age 1)               Occurrence                 19                     4753
Lane snapper (age 0)             Occurrence                 26                     9784
Lane snapper (age 1)             Occurrence                 20                     1143
Atlantic sharpnose shark            CPUE                      59                     8765
Blacktip shark                        Occurrence                 28                     1831
Spinner shark                         Occurrence                 13                     872

Table 2. Frequency of select snapper species in trawls (n = 5620) and sharks
captured in bottom longline sets (n = 1506) during fisheries-independent sur-
veys conducted from 2003 to 2017 in the Gulf of Mexico, USA. CPUE: catch 

per unit effort
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true skill statistic ranging from 0.34 to 0.54. The
User’s and Producer’s accuracies showed that absence
was consistently predicted more accurately than
presence (Table 4).

Across all species, 45 predictor variables were
retained in models, with oceanographic predictors

being most frequent, followed by prey abundance,
substrate, geography, and area of nearby estuarine
environments (Fig. 1). Of the 22 oceanographic pre-
dictors, the most common predictors were MLD (6),
bottom temperature (5), and salinity (5). Of the
prey predictor variables, menhaden abundance

was not selected as a predictor, but
croaker, squid, brown shrimp, and
mantis shrimp abundances were se -
lected. Areas of nearby wetlands and
estuaries were only tested with sharks,
and each shark species was associated
with one of these variables. Snapper
species were associated with substrate
predictors. Three of these variables
were related to artificial or natural
reefs; sediment grain size, BPI, and
distance to shoal were each selected
one time. When selected, variable im -
portance varied considerably among
variable types, with oceanographic
predictors having a high importance
value of 18.1 ± 2.5 (mean ± SE) fol-
lowed by geography (15.8 ± 3.0), prey
(12.9 ± 2.2), estuarine habitats (12.8 ±
2.4), and substrate (12 ± 2.7) (Fig. 1).

3.2.  Snappers

As expected, age-0 red and lane
snapper were more abundant in the
autumn as individuals grew large
enough to be captured by trawl sam-
pling. Each species showed ontoge-
netic shifts between age 0 and age 1
(Fig. 2). Age-0 red snapper CPUE was
most influenced by a positive associa-
tion with deeper MLD in the summer
and spring (Fig. 3). An interaction
showed the MLD in summer primarily
associated with red snapper captured
during the subsequent autumn season
(H-statistic = 0.23). Additionally, they
were positively associated with abun-
dance of brown shrimp, mantis shrimp,
and squid. In regard to substrate, age-
0 red snapper had an interaction be -
tween distance to shoal and BPI (H-
statistic = 0.55) (Fig. 3; Fig. S1) that
showed particularly high CPUE in
waters within a close proximity to a
shoal and where the BPI showed posi-
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Species                             TC  Number    Cross-        Validation  Validation
                                                                           of trees   validation                                Rs

Red snapper (age 0)          5       1400   DE = 50% DE = 41%      0.59
Red snapper (age 1)          2       1550    AUC = 0.83   AUC = 0.80       NA
Lane snapper (age 0)        3       1950    AUC = 0.84   AUC = 0.83       NA
Lane snapper (age 1)        2       2550    AUC = 0.91   AUC = 0.89       NA
Atlantic sharpnose shark  5       1900   DE = 45% DE = 43%      0.60
Blacktip shark                    1       1250    AUC = 0.84   AUC = 0.80       NA
Spinner shark                    2       1400    AUC = 0.90   AUC = 0.87       NA

Table 3. Boosted regression tree specifications, cross-validation, and valida-
tion results of species distribution models depicting catch per unit effort
(CPUE) or occurrence of select fish species in the northern Gulf of Mexico. TC:
tree complexity; AUC: area under the curve statistic for occurrence models;
DE: percent deviance explained for CPUE models; Rs: Spearman correlation; 

NA: not applicable

Species                                   Observed          Observed                 User’s 
                                               absence             presence            accuracy (%)

Red snapper (age 1)
Predicted absence                   1323                    174                          88
Predicted presence                   172                     207                          55
Producer’s accuracy                88%                   54%                           
Overall accuracy = 82%, true skill statistic = 0.43

Lane snapper (age 0)
Predicted absence                   1185                    200                          86
Predicted presence                   201                     290                          59
Producer’s accuracy                85%                   59%                           
Overall accuracy = 79%, true skill statistic = 0.45

Lane snapper (age 1)
Predicted absence                   1379                    154                          90
Predicted presence                   104                     238                          70
Producer’s accuracy                93%                   61%                           
Overall accuracy = 86%, true skill statistic = 0.54

Blacktip shark
Predicted absence                    323                      61                           84
Predicted presence                    34                       67                           66
Producer’s accuracy                90%                   52%                           
Overall accuracy = 80%, true skill statistic = 0.43

Spinner shark
Predicted absence                    333                      76                           81
Predicted presence                   24                       52                           68
Producer’s accuracy                93%                   41%                           
Overall accuracy = 79%, true skill statistic = 0.34

Table 4. Error matrices from the validation of fish species distribution models
as calculated at the optimal threshold to distinguish presence/absence via the 

maximum Kappa statistic
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tive topography in the majority of the area. The
model of age-1 red snapper was dominated by pre-
dictor variable interactions. Age-1 red snapper were
farther from shore when within 25 km of artificial
structures (H-statistic = 0.27) and in waters with a
deeper MLD in spring (H-statistic = 0.25) (Fig. 4). Be -
cause of the high density of artificial structures in the
central and western nGoM, this interaction shows
that age-1 red snapper move farther offshore in those
regions. In contrast, the eastern nGoM has relatively
few artificial structures, and the statistical interaction
suggests that age-1 red snapper are not as likely to
be distributed farther from shore in this region. Simi-
larly, the spring MLD was shallower near Florida, fur-
ther suggesting that the species does not move far-
ther offshore in the northeastern GoM. Age-1 red
snapper had a higher probability of presence within
approximately 75 km of natural reefs and at greater
depths up to a maximum 50 m depth in the study
area.

Age-0 lane snapper were associated with higher
spring bottom temperature (>21°C) in combination
with higher salinities, particularly salinities of ≥30 psu
(H-statistic = 0.51). They had a higher probability of
presence with higher autumn bottom temperatures
(≥27°C), especially where MLD in summer was shal-
low (H-statistic = 0.16) (Fig. 5). Age-0 lane snapper
were more prevalent farther from shore.

Age-1 lane snapper had a greater probability of
presence in high-salinity waters (≥34 psu), at a greater
distance from shore, and with higher autumn tem-
peratures (Fig. 6). They were more likely to occur
near artificial structures and in waters <40 m in
depth. They were detected less frequently with mud
and silt sediment grain sizes (particularly <0.03 mm

grain size) and where grain sizes became larger than
granule gravel (see Wentworth 1922).

3.3.  Sharks

The predicted distribution of the 3 shark species
showed they were most common in the western part
of the study area (Fig. 7) and likely resulted from
their associations with lower salinities and waters
with a high area of nearby wetlands and estuaries.
Blacktip sharks were positively related to chlorophyll
and area of nearby wetlands; they had the highest
probability of occurrence in waters with a salinity of
27−34 psu and with higher spring temperatures
(≥23.5°C) (Fig. 8). Blacktip sharks were positively
related to croaker abundance, but did not show a
relationship with menhaden, which are considered
by many to be the primary prey of the species. Black-
tip sharks were more common where MLD in sum-
mer was relatively deep, and they were more likely
to be caught between 00:00 and 03:00 h. Interactions
were minimal (H-statistic <15). Spinner sharks had
the highest probability of occurrence with higher
chlorophyll concentrations and salinities of ≤30 psu
(Fig. 9). Spinner sharks showed an interaction be -
tween hypoxia and area of nearby estuaries (H-sta-
tistic = 0.17), which indicated that occurrence was
most likely associated with areas of increased estuar-
ine area coupled with a moderately high probability
of hypoxia (Fig. 9).

Atlantic sharpnose shark CPUE was predicted by 8
variables without a particularly dominant variable
(Fig. 10). There was a positive association of Atlantic
sharpnose shark CPUE with salinities of <30 psu, and
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Fig. 1. Frequency and variable importance of predictor variable categories included in species distribution models of shark
and snapper species in the Gulf of Mexico, USA. Carcharhinidae include Atlantic sharpnose, blacktip, and spinner sharks. 

Lutjanidae include age-0 and age-1 lane snapper as well as age-0 and age-1 red snapper
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an interaction showed that the effect of salinity was
primarily in the spring (H-statistic = 0.22). Atlantic
sharpnose sharks were positively related to brown
shrimp and croaker relative abundance as well as the
area of nearby wetlands. Atlantic sharpnose shark
CPUE was highest in the spring and at greater
depths up to the 50 m maximum in the study area.

Another interaction effect showed that CPUE was
greater at a farther distance from the shore, particu-
larly where summer MLD was deeper (H-statistic =
0.25). An interaction of summer MLD and salinity
showed that CPUE was greater where low salinity
combined with a deeper summer MLD (H-statistic =
0.19).
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Fig. 2. Predicted distributions of juvenile red snapper and lane snapper by age group. Age-1 depictions include summer and
autumn data combined. The study area is indicated by the dashed line, and catch per unit effort (CPUE) represents the 

predicted number of fish per km of trawl survey
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4.  DISCUSSION

Because marine predators face anthropogenic
threats such as alterations to coastal habitats, pollu-
tion, and climate change, there is an urgent need to
identify how predators are expected to respond to
changes in these variables (Knip et al. 2010, Spaet et
al. 2020). Models integrated multiscale environmen-
tal datasets, of which the oceanographic variables
were the most important predictors in 6 of the 8 mod-
els. As hypothesized, all 3 shark species were posi-
tively associated with either area of nearby wetlands
or area of nearby estuaries (Figs. 8−10). Prey species
distributions were positively associated with snapper
and sharks, with total variable importance of prey
within models ranging from 21 to 49% (Figs. 3, 8,
& 10). The response curves of species relationships
with area of nearby estuarine habitats and prey spe-
cies were similar across species. Additionally, the ad -
vantages of machine learning analyses were demon-
strated by the identification of important ecological

interactions, which would have otherwise gone un -
tested. The novel species−habitat associations quan-
tified here are expected to contribute to defining
essential fish habitat for each species.

4.1.  Associations with area of nearby wetlands and
estuaries

Our findings provide further evidence for the con-
cept of outwelling, as the area of nearby estuarine
environments was consistently correlated with the
distribution of sharks in the marine environment. In
a review of marine megafauna associations with
coastal wetlands, Sievers et al. (2019) showed that
seagrass, and to a lesser extent mangroves, have
been associated with a variety of shark life stages
(Driggers et al. 2014). The value of estuarine waters
as shark nurseries has been well-recognized (Heupel
et al. 2007); however, our study is the first to link
the distribution of sharks in the offshore marine
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Fig. 3. Partial dependence plots of the age-0 red snapper boosted regression tree model with catch per unit effort (CPUE) as
the dependent variable. Gray shadings are 95% prediction intervals determined from bootstrap analysis. Data distribution is
represented in the rug plot along the x-axis, and variable importance (%) is given on the x-axis label. The plot with 2 response
curves and a y-axis scaled to a maximum of 4 CPUE shows the interaction of mixed layer depth (MLD) in summer with red
snapper in autumn (dashed line) and summer (solid line) seasons. Interaction plot of distance to shoal×proportion of area with
a bathymetric position index (BPI) ≥1 shows the effect on CPUE as indicated by color and contour lines; sum: summer; spr:
spring; Dist to shoal: distance to shoal; ct: count; Prop of BPI ≥ 1: proportion of area with a bathymetric position index ≥1
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Fig. 4. Partial dependence plots of the age-1 red snapper boosted regression tree
model with probability of presence as the dependent variable. Interaction plots of dis-
tance to artificial structure×distance to shore and mixed layer depth in spring×dis-
tance to shore show the effect on probability of presence as indicated by color and
contour lines. Dist shore: distance to shore; Dist artif struct: distance to artificial struc-
ture; Dist reef: distance to natural reef; MLD: mixed layer depth; spr: spring. Other 

details as in Fig. 3

Fig. 5. Partial dependence plots of the age-0 lane snapper boosted regression tree model with probability of presence as the
dependent variable. Interaction plots of salinity×temperature in spring and temperature in autumn×mixed layer depth in sum-
mer show the effect on probability of presence as indicated by color and contour lines. Temp: temperature; MLD: mixed layer 

depth; sum: summer; spr: spring; Dist shore: distance to shore. Other details as in Fig. 3
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environment with nearby, or adjacent, coastal wet-
lands and estuaries. Given the widespread geo-
graphic distribution of salt marshes in the world
(Hoekstra et al. 2010), this association warrants fur-
ther attention. Variables depicting distance to shore
are relatively common in marine SDMs (Melo-
Merino et al. 2020), but only a few studies have
linked marine fish or shrimp distribution to the
proximity of adjacent ecosystems (Pickens et al.
2021c). Such studies have found that the proximity
of mangroves (Barbier & Strand 1998), estuaries
(Beger & Possingham 2008, Sundblad et al. 2014),
and wetlands (Pickens et al. 2021a) have been asso-
ciated with marine species distributions. Our find-
ings suggest that a more detailed analysis of the
marine− land interface is needed to improve our
understanding of the spatial scale influenced by
estuarine environments and to quantify variables
most relevant to species such as area, number of
habitat patches, connectivity, river outflow, or
indices of productivity. This is in agreement with
Pittman et al. (2021), who suggested that we need to
shift our perspective to understand patch mosaics in
seascapes rather than treating the marine environ-
ment as a singular unit. Our study adds to research
that has demonstrated the importance of connectiv-
ity of marine environments to estuaries, seagrass,
wetlands, and freshwater environments (Sheaves
2009, Olds et al. 2012). Our findings of fish associa-

tions with prey species also illustrates the importance
of estuarine environments.

4.2.  Associations with prey

Age-0 red snapper and Atlantic sharpnose sharks
were positively associated with the estuarine-depen-
dent brown shrimp. The brown shrimp CPUE model
was primarily based on predictors of MLD and
nearby wetland area (Pickens et al. 2021a), which
further highlights the role of estuarine habitats.
Blacktip and Atlantic sharpnose shark distributions
were predicted by the abundance of croaker, which
utilize both estuarine and marine environments. The
inclusion of biotic predictor variables can increase
the predictive ability of models (Bennington et al.
2020, Costa et al. 2020), but Pickens et al. (2021c)
found that only 3% of marine fish SDMs published
since 2007 have considered biotic variables. Across
the species examined here, the predator−prey re -
sponse curves were similar in shape to a type II or III
curve of Holling (1959). The Holling response curves
show that as prey density increases, predators ini-
tially respond positively with increased consumption
followed by a plateau where the effect is minimal.
Evidence of this response has been found with lower
trophic level marine fishes on the US continental
shelf (Moustahfid et al. 2010), and our findings sug-
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Fig. 6. Partial dependence plots of the age-1 lane snapper boosted regression tree
model with probability of presence as the dependent variable. Dist shore: distance to
shore; Temp: temperature; Dist artif struct: distance to artificial structure; Sed grain 

size: sediment grain size; spr: spring. Other details as in Fig. 3
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gest a similar response may occur with predator dis-
tributions. For sharks in particular, we are aware of
only 1 article that has tested a predator−prey rela-
tionship in an SDM. Manderson et al. (2011) found
that squid abundance explained a minor amount of
variance in the distribution of spiny dogfish Squalus
acanthias. In our study, blacktip sharks were posi-
tively correlated with croaker, but we did not find
blacktip or spinner sharks to be correlated with what
is reported to be their primary prey, menhaden. A pos-
sible explanation for this is that bottom trawl surveys
are poor at sampling pelagic menhaden. However,
both shark species were associated with characteris-
tics that describe menhaden habitat. Gulf menhaden
utilize estuary and nearshore waters of moderate
salinity, where they prey directly on phytoplankton
and zooplankton (Olsen et al. 2014). These prey are

likely correlated with chlorophyll a measures. Gulf
menhaden use estuaries and open water− marsh
edges (Rozas et al. 2007, Rozas & Minello 2015);
therefore, a shark association with these habitats is
expected. Spinner sharks have been found in waters
with relatively low dissolved oxygen (Drymon et al.
2013). We found a positive relationship be tween
spinner sharks and hypoxia with a peak probability
of occurrence with a 25−40% frequency of hypoxia.
These results suggest that spinner sharks may feed
on prey that either aggregate at the edge of hypoxic
zones (e.g. Craig 2012) or aggregate toward the sur-
face (e.g. Hazen et al. 2009). In lab experiments,
Atlantic menhaden Brevoortia tyrannus avoided
waters with low dissolved oxygen (Wannamaker &
Rice 2000), and this is the case in the region evalu-
ated in our study.
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Fig. 7. Predicted distributions of spinner shark, blacktip shark, and Atlantic sharpnose shark. The study area is indicated by
the dashed line, and probability of presence represents the probability of capture given a bottom longline survey. Catch per 

unit effort (CPUE) is measured in individuals per 100 hooks per hour of bottom longline survey



Mar Ecol Prog Ser 682: 169–189, 2022

4.3.  Associations with oceanography and substrate

Salinity and chlorophyll were expected to be
important predictors of species distributions in the
study area, but the frequency and importance of the
MLD predictor was unexpected. MLD was a predic-
tor of distributions of age-0 and age-1 red snapper,
age-0 lane snapper, blacktip sharks, and Atlantic
sharpnose sharks. In the nGoM, MLD appears to be

influenced by the Loop Current, eddies, and wind
stress. The Loop Current circulates in the central
GoM, and produces large spin-off eddies that often
take a westward path originating near the Missis-
sippi Delta (Johnson et al. 2017). To a lesser extent,
wind influences water vertical structure and con-
tributes to the vorticity of eddies (Ohlmann et al.
2001). The overall result is an exchange of shelf
waters and deeper waters (Ohlmann et al. 2001,
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Fig. 8. Partial dependence plots of blacktip shark boosted regression tree model with
probability of presence as the dependent variable. Chloro: chlorophyll a; ct: count;
Temp: temperature; spr: spring; h: hour of day; MLD: mixed layer depth; sum: summer. 

Other details as in Fig. 3

Fig. 9. Partial dependence plots of spinner shark boosted regression tree model with probability of presence as the dependent
variable. Interaction plot of hypoxia probability×area of nearby estuaries shows the effect on probability of presence as indicated 

by color and contour lines. Chloro: chlorophyll a; Estuary = area of nearby estuaries. Other details as in Fig. 3
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Johnson et al. 2017), which contributes to biological
productivity via upwelling or downwelling (Spies et
al. 2016). The MLD predictor may complement the
productivity measure of chlorophyll because satel-
lite-derived chlorophyll concentrations are restricted
to the water surface. The frequency and strength of
associations with MLD suggest that it should be con-
sidered in future research. Hypoxia was only a pre-
dictor of spinner shark distribution, although waters
with a high frequency of hypoxia were predicted
to have a low CPUE, or probability of presence, of
Atlantic sharpnose sharks and all age classes of red
and lane snapper. Switzer et al. (2015) found that the
relative abundance of juvenile red snapper in shal-
low waters was reduced during years with severe
hypoxia, and they appear to have moved to deeper,

cooler waters during those years. Similarly, brown
shrimp shift their distribution in terms of depth and
temperature in response to hypoxic conditions (Craig
& Crowder 2005). In our study, the correlation of
brown shrimp prey with the demersal age-0 red
snapper and Atlantic sharpnose sharks may have
indirectly represented low prey abundances near
hypoxic waters. From a broad perspective, these as -
sociations provide evidence that the shifting of
brown shrimp distributions may affect fish at higher
trophic levels.

Substrate predictors were only retained in models
of juvenile red and lane snapper, which is in agree-
ment with their ecology. We found that age-0 red
snapper had an interaction showing they were more
abundant in close proximity to sand shoals, particu-
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Fig. 10. Partial dependence plots of the Atlantic sharpnose shark boosted regression tree model with catch per unit effort
(CPUE) as the dependent variable. Interaction plots of distance to shore×MLD summer, day of year×salinity, and MLD
 summer×salinity show the effect on CPUE as indicated by color and contour lines. MLD: mixed layer depth; sum: summer; 

ct: count; Dist shore: distance to shore. Other details as in Fig. 3
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larly when the BPI showed high topographic relief,
while age-1 lane snapper were associated with sand
sediment grain sizes. These findings demonstrate
that models with a broad spatial extent can quantify
fine-scale habitat associations, although broad influ-
ences, such as oceanographic conditions, may limit
the importance of substrate characteristics. For ex -
ample, the distribution of age-0 red snapper was highly
skewed towards the northwestern GoM, where MLD
was deeper and brown shrimp prey were most abun-
dant. The partial dependence plot of the age-1 lane
snapper model (Fig. 6) showed salinity to be the most
important variable and it had narrow confidence
intervals, which suggests the species did not occupy
waters <34 psu. Meanwhile, sediment grain size was
the sixth most important variable.

A distinct ontogenetic shift occurred from age-0 to
age-1 red and lane snapper (Fig. 2), which appears
driven by fish movement farther offshore and to -
wards structured habitats such as natural reefs and
artificial structures. BRTs automatically test interac-
tion terms because of the model structure, and we
found that age-1 red snapper moved farther offshore
where they were in close proximity to an artificial
structure or where spring MLD was deeper (Fig. 4).
The vast majority of waters in the northwestern GoM
are within 40 km of an artificial structure because of
oil and gas infrastructure, but relatively few artificial
structures exist in the northeastern GoM. Further-
more, the northeastern GoM also corresponds with
abundant natural reef substrates, and juvenile red
snapper may not need to go offshore to find appropri-
ate substrates to meet adult life history requirements.
Dance & Rooker (2019) found a spatially similar onto-
genetic shift of juvenile red snapper, but major vari-
able contributions were derived from latitude, longi-
tude, and depth. In our study, oceanographic variables
such as MLD characterized the dominant patterns,
but the age-0 model included locally recognized
habitat requirements of prey and topographic com-
plexity that lead to a more mechanistic understand-
ing of snapper distribution. Our findings of age-1 red
and lane snapper with natural reefs and artificial
structures are consistent with their ecology of mov-
ing to more complex substrates with age.

4.4.  Conclusions

We found that multiscale predictors characterizing
the ocean, prey species, substrate, and area of nearby
wetlands and estuaries all play roles in determining
species distributions in the marine environment.

Machine learning provided an effective means to
incorporate numerous predictors and to test interac-
tions. Our study builds upon fish species distribution
modeling that has focused on depth, temperature,
and geographic gradients as predictors. The selec-
tion of variables is key to SDM development (Elith &
Leathwick 2009), and predictors are best derived
from ecological knowledge and hypothesized species−
environment relationships (Mac Nally 2000, Araujo &
Guisan 2006). Here, we tested novel variables to im -
prove upon current knowledge of fish habitat re -
quirements and to inform management of fish and
the ocean environment. In agreement with Sievers et
al. (2019), we suggest that the effect of coastal wet-
lands, and their productivity, needs further consider-
ation in shark studies. This association has major
implications for sharks because of the threats of sea-
level rise, wetland loss, and pollution of estuaries.
The importance and scale of fish−substrate associa-
tions has implications with ocean uses, such as sand
mining, oil and gas infrastructure, and renewable
energy development. We acknowledge that our ana -
lyses were based on fisheries-independent survey
gears and methods that typically span 3 km in length.
Habitat selection at finer spatial scales were not
quantified. Yet, our models showed a high predictive
ability and were able to quantify hypothesized
 relationships.

Acknowledgements. NOAA and the Bureau of Ocean Energy
Management (BOEM) funded this work through intera-
gency agreement #M17PG00028. B.A.P. was supported by
CSS-Inc. under NOAA/NCCOS contract #GS-00F-217CA.
The University of North Carolina Wilmington Center for
Marine Science provided logistical support. Dr. Dan Obe-
nour and Rohith Matli of North Carolina State University
provided data on probability of hypoxia occurrence. We
thank the BOEM staff as well as Arliss Winship and Matthew
Poti (CSS-Inc. and affiliates of the NOAA Biogeography
Branch) for their review of an earlier draft of this manuscript.

LITERATURE CITED

Allouche O, Tsoar A, Kadmon R (2006) Assessing the accu-
racy of species distribution models:  prevalence, kappa and
the true skill statistic (TSS). J Appl Ecol 43: 1223−1232

Araujo MB, Guisan A (2006) Five (or so) challenges for spe-
cies distribution modelling. J Biogeogr 33: 1677−1688

Austin M (2002) Spatial prediction of species distribution:  an
interface between ecological theory and statistical mod-
elling. Ecol Model 157: 101−118

Barbier EB, Strand I (1998) Valuing mangrove−fishery link-
ages — a case study of Campeche, Mexico. Environ
Resour Econ 12: 151−166

Barry K, Condrey R, Driggers W, Jones C (2008) Feeding
ecology and growth of neonate and juvenile blacktip
sharks Carcharhinus limbatus in the Timbalier−Terre-
bone Bay complex, LA, USA. J Fish Biol 73: 650−662

186

https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1111/j.1365-2699.2006.01584.x
https://doi.org/10.1111/j.1095-8649.2008.01963.x
https://doi.org/10.1023/A%3A1008248003520
https://doi.org/10.1016/S0304-3800(02)00205-3


Pickens et al.: Distribution of snappers and sharks

Beger M, Possingham HP (2008) Environmental factors that
influence the distribution of coral reef fishes:  modeling
occurrence data for broad-scale conservation and man-
agement. Mar Ecol Prog Ser 361: 1−13

Bennington S, Rayment W, Dawson S (2020) Putting prey
into the picture:  improvements to species distribution
models for bottlenose dolphins in Doubtful Sound, New
Zealand. Mar Ecol Prog Ser 653: 191−204

Bethea DM, Buckel JA, Carlson JK (2004) Foraging ecology
of the early life stages of four sympatric shark species.
Mar Ecol Prog Ser 268: 245−264

Bradley E, Bryan C (1975) Life history and fishery of the red
snapper (Lutjanus campechanus) in the northwestern
Gulf of Mexico 1970−1974. In:  Proc 27th Gulf and Carib-
bean Fisheries Institute, University of Miami, Miami, FL,
p 77−106

Bureau of Safety and Environmental Enforcement Gulf of
Mexico OCS Region (2014) Outer continental shelf oil
and natural gas platforms − Gulf of Mexico region NAD
27. www.data.boem.gov/Mapping/Files/platform.zip (ac -
cessed 15 Mar 2018)

Chassignet EP, Hurlburt HE, Metzger EJ, Smedstad OM and
others (2009) US GODAE:  global ocean prediction with
the HYbrid Coordinate Ocean Model (HYCOM). Ocean -
ography 22: 64−75

Chong VC (2007) Mangroves−fisheries linkages — the
Mala y sian perspective. Bull Mar Sci 80: 755−772

Cortés E (1999) Standardized diet compositions and trophic
levels of sharks. ICES J Mar Sci 56: 707−717

Costa PL, Bugoni L, Kinas PG, Madureira LASP (2020) Sea-
birds, environmental features and the Argentine an -
chovy Engraulis anchoita in the southwestern Atlantic
Ocean. Mar Ecol Prog Ser 651: 199−213

Craig JK (2012) Aggregation on the edge:  effects of hypoxia
avoidance on the spatial distribution of brown shrimp
and demersal fishes in the Northern Gulf of Mexico. Mar
Ecol Prog Ser 445: 75−95

Craig JK, Crowder LB (2005) Hypoxia-induced habitat shifts
and energetic consequences in Atlantic croaker and
brown shrimp on the Gulf of Mexico shelf. Mar Ecol Prog
Ser 294: 79−94

Dance MA, Rooker JR (2019) Cross-shelf habitat shifts by
red snapper (Lutjanus campechanus) in the Gulf of Mex-
ico. PLOS ONE 14: e0213506

De’ath G (2007) Boosted trees for ecological modeling and
prediction. Ecology 88: 243−251

De’ath G, Fabricius KE (2000) Classification and regression
trees:  a powerful yet simple technique for ecological data
analysis. Ecology 81: 3178−3192

Deegan LA (1993) Nutrient and energy transport between
estuaries and coastal marine ecosystems by fish migra-
tion. Can J Fish Aquat Sci 50: 74−79

Deegan LA, Hughes JE, Rountree RA (2002) Salt marsh eco-
system support of marine transient species. In:  Weinstein
MP, Kreeger DA (eds) Concepts and controversies in
tidal marsh ecology. Springer, Dordrecht, p 333–365

Delorenzo DM, Bethea DM, Carlson JK (2015) An assess-
ment of the diet and trophic level of Atlantic sharpnose
shark Rhizoprionodon terraenovae. J Fish Biol 86: 
385−391

Drabble R (2012) Monitoring of East Channel dredge areas
benthic fish population and its implications. Mar Pollut
Bull 64: 363−372

Driggers WB III, Campbell MD, Hoffmayer ER, Ingram GW
Jr (2012) Feeding chronology of six species of car-

charhinid sharks in the western North Atlantic Ocean as
inferred from longline capture data. Mar Ecol Prog Ser
465: 185−192

Driggers WB III, Frazier BS, Adams DH, Ulrich GF, Jones
CM, Hoffmayer ER, Campbell MD (2014) Site fidelity of
migratory bonnethead sharks Sphyrna tiburo (L. 1758) to
specific estuaries in South Carolina, USA. J Exp Mar Biol
Ecol 459: 61−69

Drymon JM, Powers SP, Carmichael RH (2012) Trophic plas-
ticity in the Atlantic sharpnose shark (Rhizoprionodon
terraenovae) from the north central Gulf of Mexico. Env-
iron Biol Fishes 95: 21−35

Drymon JM, Carassou L, Powers SP, Grace M, Dindo J,
Dzwonkowski B (2013) Multiscale analysis of factors that
affect the distribution of sharks throughout the northern
Gulf of Mexico. Fish Bull 111: 370−380

Elith J, Leathwick JR (2009) Species distribution models: 
ecological explanation and prediction across space and
time. Annu Rev Ecol Evol Syst 40: 677−697

Elith J, Leathwick JR, Hastie T (2008) A working guide to
boosted regression trees. J Anim Ecol 77: 802−813

Fourcade Y, Besnard AG, Secondi J (2018) Paintings predict
the distribution of species, or the challenge of selecting
environmental predictors and evaluation statistics. Glob
Ecol Biogeogr 27: 245−256

Franks JS, VanderKooy KE (2000) Feeding habits of juvenile
lane snapper Lutjanus synagris from Mississippi coastal
waters, with comments on the diet of gray snapper Lut-
janus griseus. Gulf Caribb Res 12: 11−17

Friedman JH (2001) Greedy function approximation:  a gra-
dient boosting machine. Ann Stat 29: 1189−1232

Friedman JH, Meulman JJ (2003) Multiple additive regres-
sion trees with application in epidemiology. Stat Med 22: 
1365−1381

Friedman JH, Popescu BE (2008) Predictive learning via rule
ensembles. Ann Appl Stat 2: 916−954

Geers T, Pikitch E, Frisk M (2016) An original model of the
northern Gulf of Mexico using Ecopath with Ecosim and
its implications for the effects of fishing on ecosystem
structure and maturity. Deep Sea Res II 129: 319−331

Guisan A, Zimmermann NE (2000) Predictive habitat distri-
bution models in ecology. Ecol Modell 135: 147−186

Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I
and others (2013) Predicting species distributions for
conservation decisions. Ecol Lett 16: 1424−1435

Harrington T, Plumlee J, Drymon JM, Wells D (2016) Diets
of Atlantic sharpnose shark (Rhizoprionodon terraeno-
vae) and bonnethead (Sphyrna tiburo) in the northern
Gulf of Mexico. Gulf Caribb Res 27: 42−51

Hazen EL, Craig JK, Good CP, Crowder LB (2009) Vertical
distribution of fish biomass in hypoxic waters on the Gulf
of Mexico shelf. Mar Ecol Prog Ser 375: 195−207

Heupel MR, Carlson JK, Simpfendorfer CA (2007) Shark
nursery areas:  concepts, definition, characterization and
assumptions. Mar Ecol Prog Ser 337: 287−297

Hobday AJ, Hartog JR (2014) Derived ocean features for
dynamic ocean management. Oceanography 27: 134−145

Hoekstra JM, Molnar JL, Jennings M, Revenga C and others
(2010) The atlas of global conservation:  changes, chal-
lenges, and opportunities to make a difference. Univer-
sity of California Press, Berkeley, CA

Holling CS (1959) The components of predation as revealed
by a study of small mammal predation of the European
pine sawfly. Can Entomol 91: 293−320

Hwang SW, Lee HG, Choi KH, Kim CK, Lee TW (2013) Im -

187

https://doi.org/10.3354/meps07481
https://doi.org/10.3354/meps13492
https://doi.org/10.3354/meps268245
www.data.boem.gov/Mapping/Files/platform.zip4_
https://doi.org/10.5670/oceanog.2009.39
https://doi.org/10.1006/jmsc.1999.0489
https://doi.org/10.3354/meps13460
https://doi.org/10.3354/meps09437
https://doi.org/10.3354/meps294079
https://doi.org/10.1371/journal.pone.0213506
https://doi.org/10.1890/0012-9658(2007)88%5b243%3ABTFEMA%5d2.0.CO%3B2
https://doi.org/10.1890/0012-9658(2000)081%5b3178%3ACARTAP%5d2.0.CO%3B2
https://doi.org/10.1139/f93-009
https://doi.org/10.1111/jfb.12558
https://doi.org/10.1016/j.marpolbul.2011.10.035
https://doi.org/10.3354/meps09901
https://doi.org/10.1016/j.jembe.2014.05.006
https://doi.org/10.4039/Ent91293-5
https://doi.org/10.5670/oceanog.2014.92
https://doi.org/10.3354/meps337287
https://doi.org/10.3354/meps07791
https://doi.org/10.18785/gcr.2701.05
https://doi.org/10.1111/ele.12189
https://doi.org/10.1016/S0304-3800(00)00354-9
https://doi.org/10.1016/j.dsr2.2014.01.009
https://doi.org/10.1214/07-AOAS148
https://doi.org/10.1002/sim.1501
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.18785/gcr.1201.02
https://doi.org/10.1111/geb.12684
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.7755/FB.111.4.6
https://doi.org/10.1007/s10641-011-9922-z


Mar Ecol Prog Ser 682: 169–189, 2022

pact of sand extraction on fish assemblages in Gyeonggi
Bay, Korea. J Coast Res 30: 1251−1259

Johnson DR, Perry H, Sanchez-Rubio G, Grace MA (2017)
Loop current spin-off eddies, slope currents and disper-
sal of reef fish larvae from the flower gardens National
Marine Sanctuary and the Florida middle grounds. Gulf
Caribb Res 28: 29−39

JPL MUR MEaSUREs Project (2015) GHRSST level 4 MUR
Global Foundation sea surface temperature analysis Ver.
4.1. PO.DAAC. http: //dx.doi.org/10.5067/GHGMR-4FJ04
(accessed 2 Apr 2019)

Kearney M, Porter W (2009) Mechanistic niche modelling: 
combining physiological and spatial data to predict spe-
cies’ ranges. Ecol Lett 12: 334−350

Kim TG, Grigalunas TA, Han KN (2008) The economic costs
to fisheries because of marine sand mining in Ongjin
Korea:  concepts, methods, and illustrative results. Ecol
Econ 65: 498−507

Knip DM, Heupel MR, Simpfendorfer CA (2010) Sharks in
nearshore environments:  models, importance, and con-
sequences. Mar Ecol Prog Ser 402: 1−11

Mac Nally R (2000) Regression and model-building in con-
servation biology, biogeography and ecology:  the dis-
tinction between −and reconciliation of− ‘predictive’ and
‘explanatory’ models. Biodivers Conserv 9: 655−671

Manderson J, Palamara L, Kohut J, Oliver MJ (2011) Ocean
observatory data are useful for regional habitat modeling
of species with different vertical habitat preferences.
Mar Ecol Prog Ser 438: 1−17

Mannocci L, Boustany AM, Roberts JJ, Palacios DM and
others (2017) Temporal resolutions in species distribution
models of highly mobile marine animals:  recommenda-
tions for ecologists and managers. Divers Distrib 23: 
1098−1109

Marin-Enriquez E, Seoane J, Muhlia-Melo A (2018) Envi-
ronmental modeling of occurrence of dolphinfish (Co ry -
phaena spp.) in the Pacific Ocean off Mexico reveals sea-
sonality in abundance, hot spots and migration patterns.
Fish Oceanogr 27: 28−40

Martin TSH, Olds AD, Pitt KA, Johnston AB, Butler IR,
Maxwell PS, Connolly RM (2015) Effective protection of
fish on inshore coral reefs depends on the scale of man-
grove−reef connectivity. Mar Ecol Prog Ser 527: 157−165

Matli VRR, Fang SQ, Guinness J, Rabalais NN, Craig JK,
Obenour DR (2018) Space−time geostatistical assess-
ment of hypoxia in the northern Gulf of Mexico. Environ
Sci Technol 52: 12484−12493

Melo-Merino SM, Reyes-Bonilla H, Lira-Noriega A (2020)
Ecological niche models and species distribution models
in marine environments:  a literature review and spatial
analysis of evidence. Ecol Model 415: 108837

Montero JT, Chesney TA, Bauer JR, Froeschke JT, Graham
J (2016) Brown shrimp (Farfantepenaeus aztecus) den-
sity distribution in the northern Gulf of Mexico:  an
approach using boosted regression trees. Fish Oceanogr
25: 337−348

Moore C, Drazen JC, Radford BT, Kelley C, Newman SJ
(2016) Improving essential fish habitat designation to
support sustainable ecosystem-based fisheries manage-
ment. Mar Policy 69: 32−41

Moustahfid H, Tyrrell M, Link J, Nye J, Smith B, Gamble R
(2010) Functional feeding responses of piscivorous fishes
from the northeast US continental shelf. Oecologia 163: 
1059−1067

NOAA National Centers for Environmental Information

(2010) US coastal relief model. www.ngdc.noaa.gov/
mgg/coastal/crm.html (accessed 2 Mar 2018)

NOAA National Centers for Environmental Information
(2019) Gulf of Mexico hypoxia watch. www.ncei.noaa .
gov/ maps/hypoxia/ (accessed 7 Jan 2021)

NOAA National Marine Fisheries Service (2019) Red drum
essential fish habitat (EFH) map and GIS data. https://
www.fisheries.noaa.gov/resource/map/red-drum- essential-
fish-habitat-efh-map-gis-data (accessed 8 Apr 2019)

Odum EP (1980) The status of three ecosystem-level hypo -
theses regarding salt marsh estuaries:  tidal subsidy, out-
welling, and detritus-based food chains. In:  Kennedy VS
(ed) Estuarine perspectives. Elsevier, New York, NY,
p 485–495

Office for Coastal Management (2017) Artificial reefs. https://
marinecadastre.gov/data/ (accessed 15 Mar 2018)

Office for Coastal Management (2020) Outer Continental
Shelf Lands Act. https: //inport.nmfs.noaa .gov/inport/
item/ 48913 (accessed 6 Aug 2018)

Ohlmann JC, Niiler PP, Fox CA, Leben RR (2001) Eddy
energy and shelf interactions in the Gulf of Mexico.
J Geophys Res C Oceans 106: 2605−2620

Olds AD, Connolly RM, Pitt KA, Maxwell PS (2012) Primacy
of seascape connectivity effects in structuring coral reef
fish assemblages. Mar Ecol Prog Ser 462: 191−203

Olsen Z, Fulford R, Dillon K, Graham W (2014) Trophic role
of gulf menhaden Brevoortia patronus examined with
carbon and nitrogen stable isotope analysis. Mar Ecol
Prog Ser 497: 215−227

Pennino MG, Conesa D, Lopez-Quilez A, Munoz F, Fernan-
dez A, Bellido JM (2016) Fishery-dependent and -inde-
pendent data lead to consistent estimations of essential
habitats. ICES J Mar Sci 73: 2302−2310

Pickens BA, Carroll R, Taylor JC (2021a) Predicting the dis-
tribution of penaeid shrimp reveals linkages between
estuarine and marine habitats. Estuar Coasts 44: 2265−2278

Pickens BA, Taylor JC, Finkbeiner M, Hansen D, Turner L
(2021b) Modeling sand shoals on the US Atlantic Shelf: 
moving beyond a site-by-site approach. J Coast Res 37: 
227−237

Pickens BA, Carroll R, Schirripa MJ, Forrestal F, Friedland
KD, Taylor JC (2021c) A systematic review of spatial
habitat associations and modeling of marine fish distri-
bution:  a guide to predictors, methods, and knowledge
gaps. PLOS ONE 16: e0251818

Pittman SJ, Kneib RT, Simenstad CA (2011) Practicing coastal
seascape ecology. Mar Ecol Prog Ser 427: 187−190

Pittman SJ, Yates KL, Bouchet PJ, Alvarez-Berastegui D and
others (2021) Seascape ecology:  identifying research pri-
orities for an emerging ocean sustainability science. Mar
Ecol Prog Ser 663: 1−29

Plumlee JD, Wells RJD (2016) Feeding ecology of three
coastal shark species in the northwest Gulf of Mexico.
Mar Ecol Prog Ser 550: 163−174

Poiesz SSH, Witte JIJ, van der Veer HW (2020) Only a few
key prey species fuel a temperate coastal fish food web.
Mar Ecol Prog Ser 653: 153−166

Queiroz N, Humphries NE, Mucientes G, Hammerschlag N
and others (2016) Ocean-wide tracking of pelagic sharks
reveals extent of overlap with longline fishing hotspots.
Proc Natl Acad Sci USA 113: 1582−1587

R Core Team (2018) R:  a language and environment for sta-
tistical computing. R Foundation for Statistical Comput-
ing, Vienna

Rabalais N, Diaz RJ, Levin L, Turner R, Gilbert D, Zhang J

188

https://doi.org/10.18785/gcr.2801.10
https://doi.org/10.5067/GHGMR-4FJ04
https://doi.org/10.1111/j.1461-0248.2008.01277.x
https://doi.org/10.1016/j.ecolecon.2007.07.016
https://doi.org/10.3354/meps08498
https://doi.org/10.1023/A%3A1008985925162
https://doi.org/10.3354/meps09308
https://doi.org/10.1111/ddi.12609
https://doi.org/10.1111/fog.12231
https://doi.org/10.3354/meps11295
https://doi.org/10.1021/acs.est.8b03474
https://doi.org/10.1016/j.ecolmodel.2019.108837
https://doi.org/10.1111/fog.12156
https://doi.org/10.1016/j.marpol.2016.03.021
https://doi.org/10.1007/s00442-010-1596-2
https://doi.org/10.5194/bg-7-585-2010
https://doi.org/10.1073/pnas.1510090113
https://doi.org/10.3354/meps13472
https://doi.org/10.3354/meps11723
https://doi.org/10.3354/meps13661
https://doi.org/10.3354/meps09139
https://doi.org/10.1371/journal.pone.0251818
https://doi.org/10.1093/icesjms/fsw062
https://doi.org/10.3354/meps10519
https://doi.org/10.3354/meps09849
https://doi.org/10.1029/1999JC000162
https://inport.nmfs.noaa.gov/inport/item/48913
https://marinecadastre.gov/data/
www.ncei.noaa.gov/maps/hypoxia
www.ngdc.noaa.gov/mgg/coastal/crm.html


Pickens et al.: Distribution of snappers and sharks

(2010) Dynamics and distribution of natural and human-
caused hypoxia. Biogeosciences 7: 585−619

Rester JK (ed) (2017) SEAMAP environmental and biologi-
cal atlas of the Gulf of Mexico, 2015. No. 263. Gulf States
Marine Fisheries Commission. https: //www.gsmfc.org/
publications/GSMFC%20Number%20263.pdf 

Rezak R, Bright TJ, McGrail DW (1985) Reefs and banks of
the northwestern Gulf of Mexico:  their geological, bio-
logical, and physical dynamics. Wiley, New York, NY

Robbins LL, Hansen ME, Raabe EA, Knorr PO, Browne J
(2007) Cartographic production for the Florida Shelf
Habitat (FLaSH) Map Study:  generation of surface grids,
contours, and KMZ files. Open-File Rep 2007-1397. US
Geological Survey, St Petersburg, FL. https: //pubs. usgs.
gov/ of/2007/1397/html/report.html (accessed 8 Apr 2018)

Roberts JJ, Best BD, Dunn DC, Treml EA, Halpin PN (2010)
Marine Geospatial Ecology Tools:  an integrated frame-
work for ecological geoprocessing with ArcGIS, Python,
R, MATLAB, and C++. Environ Model Softw 25: 
1197−1207

Robinson KL, Ruzicka JJ, Hernandez FJ, Graham WM,
Decker MB, Brodeur RD, Sutor M (2015) Evaluating
energy flows through jellyfish and gulf menhaden
(Brevoortia patronus) and the effects of fishing on the
northern Gulf of Mexico ecosystem. ICES J Mar Sci 72: 
2301−2312

Robinson LM, Elith J, Hobday AJ, Pearson RG, Kendall BE,
Possingham HP, Richardson AJ (2011) Pushing the limits
in marine species distribution modelling:  lessons from
the land present challenges and opportunities. Glob Ecol
Biogeogr 20: 789−802

Robinson NM, Nelson WA, Costello MJ, Sutherland JE,
Lundquist CJ (2017) A systematic review of marine-
based species distribution models (SDMs) with recom-
mendations for best practice. Front Mar Sci 4: 421

Rozas LP, Minello TJ (2015) Small-scale nekton density and
growth patterns across a saltmarsh landscape in Bara -
taria Bay, Louisiana. Estuaries Coasts 38: 2000−2018

Rozas LP, Minello TJ, Zimmerman RJ, Caldwell P (2007)
Nekton populations, long-term wetland loss, and the
effect of recent habitat restoration in Galveston Bay,
Texas, USA. Mar Ecol Prog Ser 344: 119−130

Santora JA, Schroeder ID, Field JC, Wells BK, Sydeman WJ
(2014) Spatio-temporal dynamics of ocean conditions
and forage taxa reveal regional structuring of seabird−
prey relationships. Ecol Appl 24: 1730−1747

Scales KL, Miller PI, Hawkes LA, Ingram SN, Sims DW,
Votier SC (2014) On the front line:  frontal zones as prior-
ity at-sea conservation areas for mobile marine verte-
brates. J Appl Ecol 51: 1575−1583

Sheaves M (2009) Consequences of ecological connectivity: 
the coastal ecosystem mosaic. Mar Ecol Prog Ser 391: 
107−115

Shipp RL, Bortone SA (2009) A perspective of the importance
of artificial habitat on the management of red snapper in
the Gulf of Mexico. Rev Fish Sci 17: 41−47

Sievers M, Brown CJ, Tulloch VJD, Pearson RM, Haig JA,
Turschwell MP, Connolly RM (2019) The role of vege-
tated coastal wetlands for marine megafauna conserva-
tion. Trends Ecol Evol 34: 807−817

Spaet JLY, Manica A, Brand CP, Gallen C, Butcher PA
(2020) Environmental conditions are poor predictors of
immature white shark Carcharodon carcharias occur-
rences on coastal beaches of eastern Australia. Mar Ecol
Prog Ser 653: 167−179

Spies RB, Senner SE, Robbins CS (2016) An overview of the
northern Gulf of Mexico ecosystem. Gulf Mex Sci 1: 
98−121

Story M, Congalton RG (1986) Accuracy assessment:  a user’s
perspective. Photogramm Eng Remote Sensing 52: 397−399

Sundblad G, Bergström U, Sandström A, Eklöv P (2014)
Nursery habitat availability limits adult stock sizes of
predatory coastal fish. ICES J Mar Sci 71: 672−680

Swets JA (1988) Measuring the accuracy of diagnostic sys-
tems. Science 240: 1285−1293

Switzer TS, Chesney EJ, Baltz DM (2015) Habitat use by
juvenile red snapper in the northern Gulf of Mexico: 
ontogeny, seasonality, and the effects of hypoxia. Trans
Am Fish Soc 144: 300−314

Szedlmayer ST, Lee JD (2004) Diet shifts of juvenile red
snapper (Lutjanus campechanus) with changes in habi-
tat and fish size. Fish Bull 102: 366−375

Tarnecki JH, Wallace AA, Simons JD, Ainsworth CH (2016)
Progression of a Gulf of Mexico food web supporting
Atlantis ecosystem model development. Fish Res 179: 
237−250

US Fish and Wildlife Service (2018) National wetlands in -
ventory. www.fws.gov/wetlands/ (accessed 11 Dec 2018)

Walbridge S, Slocum N, Pobuda M, Wright DJ (2018) Uni-
fied geomorphological analysis workflows with Benthic
Terrain Modeler. Geosciences 8: 94

Wannamaker CM, Rice JA (2000) Effects of hypoxia on
movements and behavior of selected estuarine organ-
isms from the southeastern United States. J Exp Mar Biol
Ecol 249: 145−163

Wells RJD, Cowan JH Jr, Fry B (2008) Feeding ecology of
red snapper Lutjanus campechanus in the northern Gulf
of Mexico. Mar Ecol Prog Ser 361: 213−225

Wentworth CK (1922) A scale of grade and class terms for
clastic sediments. J Geol 30: 377−392

Williams SJ, Flocks J, Jenkins C, Khalil S, Moya J (2012)
Offshore sediment character and sand resource assess-
ment of the northern Gulf of Mexico, Florida to Texas.
J Coast Res 60: 30−44

Wisz MS, Pottier J, Kissling WD, Pellissier L and others
(2013) The role of biotic interactions in shaping distribu-
tions and realised assemblages of species:  implications
for species distribution modelling. Biol Rev Camb Philos
Soc 88: 15−30

Zuercher R, Galloway AWE (2019) Coastal marine ecosys-
tem connectivity:  pelagic ocean to kelp forest subsidies.
Ecosphere 10: e02602

189

Editorial responsibility: Simon Pittman, 
Oxford, UK

Reviewed by: M. Sievers, D. Haulsee and 
1 anonymous referee

Submitted: May 11, 2021
Accepted: October 8, 2021
Proofs received from author(s): December 22, 2021

https://www.gsmfc.org/publications/GSMFC%20Number%20263.pdf
https://pubs.usgs.gov/of/2007/1397/html/report.html
https://doi.org/10.1016/j.envsoft.2010.03.029
https://doi.org/10.1093/icesjms/fsv088
https://doi.org/10.1111/j.1466-8238.2010.00636.x
https://doi.org/10.3389/fmars.2017.00421
https://doi.org/10.1007/s12237-015-9945-3
https://doi.org/10.3354/meps06945
https://doi.org/10.1890/13-1605.1
https://doi.org/10.1111/1365-2664.12330
https://doi.org/10.3354/meps08121
https://doi.org/10.1080/10641260802104244
https://doi.org/10.1016/j.tree.2019.04.004
https://doi.org/10.1002/ecs2.2602
https://doi.org/10.1111/j.1469-185X.2012.00235.x
https://doi.org/10.2112/SI_60_4
https://doi.org/10.1086/622910
https://doi.org/10.3354/meps07425
https://doi.org/10.1016/S0022-0981(00)00160-X
https://doi.org/10.3390/geosciences8030094
www.fws.gov/wetlands
https://doi.org/10.1016/j.fishres.2016.02.023
https://doi.org/10.1080/00028487.2014.991447
https://doi.org/10.1126/science.3287615
https://doi.org/10.1093/icesjms/fst056
https://doi.org/10.3354/meps13488



